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Interna waves in a uniformly stratified fluid of sufficiently large amplitude develop 
tilted layers in which the fluid is statically unstable. To investigate the evolution and 
subsequent development of this structure, experiments are made in which a horizontal 
rectangular tube containing a fluid of uniform density gradient is gently rocked at a 
selected frequency about a horizontal axis normal to the tube length. Large-amplitude 
standing internal gravity waves of the first mode are generated, and these steepen and 
overturn, the isopycnal surfaces folding to produce a vertically thin and horizontally 
extensive layer in which the fluid is statically unstable. In experiments with relatively 
small forcing, the layer persists for some 6 buoyancy periods, with no detected evidence 
of secondary instability, and static stability is re-established as the periodic flow 
reverses. The layer however breaks down, with consequent diapycnal mixing, when 
greater forcing is applied. 

The scale and growth rates of instability in the overturning internal gravity waves are 
estimated using the theory developed in a companion paper by Thorpe (1994a). For 
the parameters of the laboratory experiments with relatively small forcing, the growth 
rates are small, consistent with the absence of signs of secondary instability. Larger 
growth rates and disturbance amplification factors of about 70 are predicted for the 
conditions in the experiment in which mixing was observed to occur. The experimental 
observations are consistent with an instability having a longtudinal structure. 

We conclude that the form and development of breaking in internal gravity waves 
will vary according to the circumstances in which waves break, but depend on the 
Prandtl number of the fluid and, in particular, on the Rayleigh and Reynolds numbers 
of regions of static instability which develop as the waves overturn. 

1. Introduction 
1.1.  Background; breaking internal waves 

The breaking of internal gravity waves is a fundamental process contributing to 
turbulence in stratified fluids, and is an important mechanism of diapycnal mixing or 
of heat and momentum transport in the atmosphere and oceans. The nature of 
breaking and the subsequent transition stages, which eventually result in turbulent 
transfer, are however not fully understood. As a result of field and, especially, 
laboratory studies, several processes are known to play their part in particular 
circumstances. A helpful discussion of the concept of wave breaking is given by 
McIntyre & Palmer (1984, 1985), and some aspects of its dynamical consequences are 
addressed by McEwan (1983 a, b). 

Kelvin-Helmholtz (K-H) or Holmboe instability may be induced by fluid motion at 
the crest or trough of internal waves propagating on thin interfaces, such as those 
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FIGURE 1. For caption see facing page. 
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found in the ocean thermocline (Woods 1968), with the generation of overturning 
billows. When a significant (ambient) shear is present, the crest or trough of an 
interfacial wave may steepen and overturn, forming a z-shaped pattern of isopycnals 
which includes regions of static instability, and this may precede the onset of K-H 
instability (Thorpe 1978~).  A similar localized overturn (in contrast to the periodic 
overturns in K-H instability) of isopycnal surfaces occurs at the node of steep 
interfacial standing waves (Thorpe 1968 a).  The formation of z-shaped isopycnals 
appears to be a common feature of steep internal waves, being found in internal waves 
in uniformly accelerating shear flows (Thorpe 1978b, e.g. figures 5g and 7h), and in 
internal surges propagating from the ends of tubes filled with stratified fluids, when 
they are tilted to produce a shear flow. Examples of the latter are given in the series of 
photographs shown in figure 1. The presence and development of z-shaped structures 
in the surges propagating from the left-hand end of the tube can be seen near its upper 
boundary. These surges are presently the subject of investigation of Mrs S .  Bruno in 
the Centre for Water Research at the University of Western Australia (private 
communication). The existence of waves containing regions of statically unstable 
stratification suggests that the selection of a condition in which isopycnals become 
vertical as a limit for the finite-amplitude evolution of internal waves (see for example 
Blumen 1988), may be arbitrary and unrealistic. The persistence and survival of such 
statically unstable overturning regions is a major subject of later discussion. 

There are other ways in which internal waves break. One is by the formation of 
rotors, for example in solitary waves on density interfaces (Davis & Acrivos 1967), or 
in large-amplitude lee waves produced by flow over topography (Castro, Snyder & 
Marsh 1983; Rottman & Smith 1989), where the onset of rotor formation or wave 
breaking may be associated with an enhancement of wave drag (Miranda & James 
1992), but the transitional stages leading to the formation of rotors, and the associated 
mixing within them, have received little attention. 

Static instability on the scale of the waves has been observed in laboratory internal 
waves propagating vertically towards a critical layer (Thorpe 1981). Koop & McGee 
(1986) find K-H instability to develop in the non-uniform density, and velocity, 
gradient fields of waves with large vertical wavenumbers close to critical layers. Winters 
& D'Asaro (1989) simulate the development of density overturns by a two-dimensional 
numerical model of waves approaching a critical layer, which subsequently become 
unstable by a shear flow instability. In a related study, Winters & Riley (1992) choose 
to consider a simplified model. They examined the three-dimensional stability of a flow, 
U = U,, cos z ,  with density proportional to iBsin 22 +z(B- l), chosen to represent the 
velocity and density fields in waves approaching a critical layer, where B and U, are 
constants and z is the scaled upward vertical coordinate. For 0 9 B d i, the density is 
statically stable for all z ,  whilst for f < B < 1, the stratification varies in the vertical 
between statically unstable and stable values, but is stable at levels where the shear is 
greatest. Analytical solutions are found for the inviscid flow, and numerical solutions 

FIGURE 1. Static instability with z-shaped isopycnals developing in a surge produced from an end of 
the tilted tube, 10 cm wide, 16 cm high and 4.82 m long, filled with stratified salt solution with a 
uniform density gradient. A turbulent region has been produced by flow over a regular array of bars 
fixed to the base of the tube. The buoyancy frequency is 2.55 s-' and a shear flow has been produced 
by tilting the tube down on the left through an angle of 15.2" for 2.47 s before returning it to the 
horizontal. Photographs are shown at times of (a) 8.2 s; (b) 9.26 s; ( c )  10.33s; (d )  11.39 s, clearly 
showing the z-shaped overturn; (e) 12.46 s and ( f )  13.52 s after the tube was returned to the 
horizontal. The photograph (b) is the last shown in the montage of photographs in figure 2(b) of 
Thorpe (1984), where further details are given. 
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are obtained for viscous and diffusive flow at a Reynolds number, Re = lo6 and B = 1, 
when the density varies sinusoidally with z.  (The stability of a similar density profile for 
17” = 0 is studied by Batchelor & Nitsche 1991, and their analysis and conclusions are 
described in the companion paper, Thorpe 1994a.) Although present in the inviscid 
analysis, no unstable modes are found at selected values of shear and wavenumber 
when the latter are taken to be in the flow direction; the presence of strong shear 
apparently completely inhibited any convective instabilities with such wavenumbers. 
Disturbances with cross-flow-directed wavenumbers, corresponding to longitudinal 
rolls, are however found that are unstable, pointing to the care needed to include 
consideration of three-dimensional disturbances in numerical simulations of the 
evolution of large-amplitude waves. Lin et al. (1993) also conduct numerical 
experiments to examine the nature of secondary instability following conditions of 
static instability when waves in a uniform density gradient approach a critical layer in 
a jet-like mean flow. Simulation at various values of the parameters indicate again that 
a Rayleigh-Taylor instability with longitudinal rolls is the most likely unstable 
secondary mode. 

Conditions of static instability are also observed to develop in standing internal 
waves in a uniform density gradient in a rectangular container (Thorpe 1968a; 
McEwan 1971 ; Taylor 1992). McEwan (1971, 1973) describes the onset of ‘traumata’, 
regions of small-scale turbulence, in standing waves or in resonantly interacting 
internal wave trains, but offers no complete description of the processes leading to 
these conditions. Taylor ( 1  992), however, shows that a variety of transient structures 
occur in forced standing waves, including interleaving (similar to the z-shaped folded 
isopycnals described above) and patterns resembling rising thermals and single rollers 
(his figures 1 and 2, respectively), suggesting that several processes may contribute to 
mixing, but defines no hierarchy or sequence of processes. One particular process of 
importance has however been identified ; even small-amplitude internal waves in a 
uniform density gradient are prone to parametric instability (McEwan & Robinson 
1975; Mied 1976; Drazin 1977; Klostermeyer 1982), but whilst this is suggested as a 
means to cascade energy to lower frequencies and to higher wavenumbers, the precise 
role of the instability in mixing is far from clear. 

Steep, or breaking, internal waves are predicted as a consequence of interaction with 
inertial waves (Broutman 1984, 1986) or with larger scale waves (Thorpe 1989) in 
conditions favouring the development of wave ‘caustics’, where the group velocity of 
the internal waves matches the phase speed of the lower frequency, or longer, wave. 
The steepening and overturn of internal waves on reflection from sloping boundaries 
has been considered by several authors, particularly in connection with the resulting 
contribution to ocean boundary mixing (see for example Wunsch 1969; Thorpe 1987; 
Ivey & Nokes 1989), but with little attention being given to the transitional processes 
which lead to turbulence. The propagation through a fluid of a region where breaking 
is produced and carried by the velocity characteristics of both waves and wave groups, 
and the repetition frequency of breaking, are discussed by Thorpe (1988). The locus of 
extreme conditions, such as the minimum Richardson number, maximum shear or 
greatest wave slope, is predicted to be horizontal, with a recurrence period equal to the 
period of the internal waves. 

We find, in the experiments described below, circumstances in which wave 
overturning occurs and persists for some finite period of time. If these conditions are 
‘supercritical’, allowing infinitesimal disturbances to grow, and are sustained for a 
sufficient period of time to allow disturbances to achieve a substantial amplitude, then 
irreversible changes to the periodic flow and density field are expected, resulting in 
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appreciable energy dissipation, or at least in a redistribution of energy to different 
wavenumbers and frequencies. An objective of this study is to define more closely what 
these ' supercritical' conditions may be, and to begin an investigation of the nature of 
the disturbances that will gain energy as a result of the wave breaking. As a first step, 
we describe the static instability that may occur in standing or progressive waves in a 
uniform density gradient, and this provides an introduction to the experiments and 
their interpretation. 

1.2. Internal waves of$nite amplitude in a uniform density gradient 
In fortunate contrast to surface gravity waves, there is an exact analytical solution of 
the fully nonlinear equations of motion that describe two-dimensional internal gravity 
waves in a fluid of constant density gradient, provided the effects of viscosity and 
diffusion may be neglected and conditions for the Boussinesq approximation are 
satisfied. These solutions for progressive and standing waves remain valid even when 
regions of static instability occur in the waves. 

The solution for the stream function, qk7 and the non-dimensional density 
perturbation, p, of progressive waves is 

$ = (acr/k) sin (kx + mz - crt), 

p = ( N 2 a / g )  sin (kx + mz - at ) ,  

(1) 

(2) 

where a is the wave amplitude, x and z the horizontal and vertical coordinates 
respectively, (k, m )  the corresponding wavenumber vector, and g is the acceleration due 
to gravity. The x and z velocity components are given by u = c?$/az and w = -a$/ax, 
respectively. The wave frequency, a, is given by 

cr2 = N2k2/(k2 + m2) = N2 sin2 0, (3) 

where N is the buoyancy frequency and 0 is the slope of the constant-phase surfaces. 
These surfaces are parallel to the direction of the wave group velocity and the motion 
of fluid particles, and normal to the phase speed vector. The fluid density is 
po[ 1 - ( N 2 / g )  z +p] and its vertical gradient is zero when 

amcos(kx+mz-crt) = 1, (4) 

that is on the constant phase line 

kx + mz - crt = cos-I (am)-'. ( 5 )  

The condition for the existence of regions of static instability is am > 1. 
A corresponding exact solution for standing internal waves is 

$ = (aa/k) cos (kx + mz) cos at ,  

p = ( N 2 a / g )  sin (kx + mz)  sin at ,  

(6)  

(7) 

with static instability where 
am cos (kx + mz) sin a t  > 1. 

Again am must exceed unity for this condition to be satisfied somewhere in the fluid. 
The shape of isopycnal surfaces z = zo + {(x, I ) ,  where zo is the level of the isopycnal 

surface of density pn[l - ( N 2 / g )  z,] in the fluid in the absence of waves, 5 is given by the 
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FIGURE 2. The form of isopycnal surfaces in two-dimensional internal gravity waves in a uniform 
density gradient. The propagation angle 8 = 30". (a)  am = 0.5; (b) am = 1.0, incipient static 
instability; (c) am = 1.5, with regions of static instability shaded. 

(see for example Thorpe 1968 b) .  For progressive waves and without loss of generality, 
we take zo = 0 and t = 0, to obtain the shape of isopycnal surfaces 

5 = a sin (kx + mc). (10) 

Figure 2 shows the shape of isopycnal surfaces for 0 = 30" in three cases: with no 
regions of static instability, with isopycnals which just become vertical, and with 
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regions of static instability that extend in relatively thin repetitive layers through the 
fluid. We obtain the same equation for standing waves at z,, = 0 and at times 
f = (2n+ 1).n/2c7n = 1,2,3, .. ., when the fluid is at rest and the displacement is 
greatest, and at times of maximum displacement the density field of the finite- 
amplitude waves is given by 

p1 = p,( 1 - ( N 2 / g )  [z + a sin (kx + mz)]}. ( 1  1) 

At these times the density and isopycnal distributions are identical for progressive and 
standing waves. In progressive waves, however, the regions of static instability shown 
in figure 2(c) propagate through the fluid at the wave phase speed c / ( k 2  + m2)i in a 
direction normal to the constant-phase surfaces, whilst in standing waves the regions 
of static instability persist for only a period short in comparison to the wave period. 
If, however, wave breaking derives from a Rayleigh-Taylor instability developing in 
the regions of static instability, and has constant phase-lines parallel to the flow so that 
the fluid motion induced by the wave plays no part (see Thorpe 1994a), and if the 
instability has an inverse growth rate that is small in comparison to the period of time 
for which the conditions of static instability in the wave field are maintained, then the 
form of breaking in progressive and standing waves will be similar. A study of one or 
other may lead to information of more general application. 

For practical reasons we choose to focus attention on standing waves. These are 
readily forced to large amplitude in the laboratory. It is, naturally, impossible to 
reproduce the conditions of the infinite fluid in which the above solution is valid, but 
approximate solutions are available to describe the density and velocity fields in a 
rectangular container with horizontal and vertical boundaries. These solutions are 
described in 92.1 and, although unable to predict the conditions or regions of wave 
overturn, indicate those in which steep isopycnals will occur, the precursors of static 
instability. Experiments made in a long rectangular tube are described in 52.2. They 
show that, as indicated by the solutions, static instability occurs in horizontally 
extensive, but vertically shallow, layers and persists for periods of several times the 
buoyancy period of the fluid, with evidence of secondary instability when the forcing 
is sufficiently large. 

If k 6 m, as is common in the ocean, the horizontal density gradients are much less 
than the vertical ones, and the local density field perturbed by internal waves ( 1  1) is 
approximately uniform in the horizontal. Locally it may be written 

p1 = po[ 1 - ( N 2 / g )  z + A sin Kz], (12) 

where A is a constant ( 4  1) and K (  = m) is the vertical wavenumber. This local density 
field will determine the conditions for instability of the waves, provided at least that the 
aspect ratio of the evolving instability is large in comparison to that of the density field 
and the growth rate of the instability is large in comparison to the evolution rates of 
the disturbed fields of density and velocity in the internal waves. This x-independent 
density profile with layers of static instability separated by layers of enhanced stability 
(buoyancy frequency > N )  has been discussed by Thorpe ( 1 9 9 4 ~ )  and provides a good 
description of the density field in the laboratory experiments. It is therefore used to 
help explain the presence or absence of detected secondary instability in the 
experiments. 
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2. Standing internal gravity waves in a rectangular container with a 
uniform density gradient 

2.1. Theory 
Thorpe (I968 a )  described a technique to derive a Stokes-like expansion for standing 
internal gravity waves in a rectangular container of length, L, and depth, H,  when the 
Boussinesq approximation is valid. Taking horizontal and vertical axes x,z at one 
corner of the container and wavenumber vector (k,m), the solutions to second order 
are 

for the stream function, with density 

9 = (acr,/k) sin k.x sin mz sin crt 

p1 = po[ 1 - - ( z  - a cos k x  sin mz cos at + ia'm sin 2mz( 1 + cos 2at))], (14) 0 
where the wave frequency is 

We may determine the region of small negative or of positive (statically unstable) 
density gradients by defining the locus of points on which the density gradient reaches 
a specified value, Q N z / g ,  where Q is a non-dimensional constant, positive in unstably 
stratified regions. To second order we find 

which, referred to axes x', z' at the centre of the container and limiting attention to the 
first internal wave mode, can be written 

Q + 1 = am sin kx' sin mz' cos crt + ($am)' cos 2mz'( 1 + cos 2 4 ,  

where now k = n / L  and m = n / H .  Writing X = sinkx and Z = am sinmz', and 
choosing t = 0, the time of maximum density perturbation, we have 

which is a hyperbola with asymptotes X = 2 and Z = 0. If (am)2 < 2(1+ Q),  the 
hyperbola has no real values of 2 at X = 0 and, for X > 0, lies in the sector between 
X = Z and Z = 0. The region in which the density gradient exceeds Q does not then 
extend to the centre of the container. The hyperbola intersects the Z-axis at 
2 = f [;(am)'- Q - 13; when (am)' > 2(1+ Q). Real values for Z at the tube ends can 
only be found if (1 6 )  has real roots at x = t = 0, when 

= cr,, with 

cri = ( N 2 k 2 ) / ( k 2  +m'). (15) 

Q = - 1 + am cos kx cos mz cos crt - cos 2mz( 1 + cos 2crt) (16) 

Z2-XZ+Q+1-a(am)2 = 0, (17) 

(am)' > :+2Q. (18) 
In summary, at second order, no surfaces of constant density gradient, Q, exist if 

(am)' < $+ 2Q- When 2 + 2Q > (am)' > $ + 2Q, this gradient is reached on (and 
exceeded within) surfaces which do not extend to the centre of the container. When 
(am)' > :+2Q,  the region in which the specified density gradient is reached and 
exceeded extends along the whole tube, the shape near the centre (small kx and mz) 
being approximately hyperbolic with asymptotes z = 0 and z = kx/(am2). In the 
experiments to be described in $2.2, am is of order unity and m % k ,  and the prediction 
of this second-order analysis is that the central axis of the high-gradient region, 
bisecting the asymptotes, is tilted at an angle of approximately (2/2 - 1) k/(am2) or 
approximately 0.41 4H/(amL) to the horizontal. 

The second-order approximation is, however, found to be valid only for sufficiently 
small values of am. We have continued the expansion to fourth order.? Decrease in the 

Copies of the expressions for density perturbations may be obtained from the editor or author. 
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magnitude of successive terms in @ and its first derivatives, the velocity components, 
is rapid. The horizontal flow near the centre of the container is approximately 
sinusoidal in z with wavenumber K, even when a m  is of order unity. This implies that, 
to the extent to which the limited series can provide a useful prediction, the horizontal 
velocity of, and near, the layer in which static instability is found in the experiment 
described in $2.2, varies approximately linearly with z,  and that the shear is therefore 
uniform. This conclusion will be used in 53  when we come to estimate the growth rates 
of disturbances. The vertical density gradient is, however, strongly influenced by 
higher-order terms, particularly those at fourth order which are solely functions of z 
and t .  We have calculated the size of terms at each order contributing to the density 
gradient when it first reaches the non-dimensional value Q at x = 0, and the 
corresponding ‘slope’, am. In each case the time at which the maximum gradient was 
reached was t = 0. The results are shown in figure 3 .  Although, for Q < -0.4, third- 
and fourth-order terms are less than 20 % of the leading terms, signs that the series is 
convergent are at best weak, and as Q approaches zero (corresponding to the onset of 
static instability), the higher-order terms significantly become large and even the 
truncated series does not suggest convergence. 

It follows that precise definition of the conditions of the onset of static instability 
cannot be established by the second- or fourth-order expansions alone, and requires a 
new approach, perhaps by an efficient means of calculating higher-order terms or by 
numerical computation. It appears likely however that a ‘slope’, am, of about unity is 
necessary to promote conditions of static instability, that the horizontal flow has a 
vertical structure that is only slightly modified by terms of order higher than the first, 
remaining approximately sinusoidal in z when am is of order unity, and that, in the 
centre of the container, instability will first be approached in a layer of small vertical 
and relatively large horizontal extent. 

2.2. The laboratory experiments 
Standing internal waves were generated by rocking a Perspex tube, filled with a 
stratified salt solution, about a horizontal axis. The tube is 295 cm long, 10 cm deep 
and 26.1 cm wide. It was filled whilst vertical, using the standard two-tank technique 
with water and brine, to produce a uniform density gradient. Small quantities of dye 
were injected into the inlet tube during filling to mark isopycnal surfaces. Once 
completely full, with all the air removed, the tube was slovdy and carefully (to avoid 
mixing) rotated into a horizontal position, thus stretching and thinning the dye bands. 
One end of the tube was then connected by a near-vertical rigid shaft to the eccentric 
drive of a motor and gear box with preset amplitude and frequency chosen to match 
that of the first internal wave mode. 

The buoyancy frequency in the experimental runs was between 2.37 and 2.69 rad s-l, 
with corresponding first mode wave frequencies of 68.9-78.2 s. The chosen forcing 
frequencies were within 3 % of the natural frequencies of the first internal wave mode. 
The amplitude of the forcing (half the angle of oscillation) was adjusted between runs 
in the range 3.7 x rad. All experiments were begun with the tube 
horizontal at the mid-point of the drive stroke. The motor was then switched on, 
causing an initial downward motion of the right-hand end of the tube. The response 
of the fluid was such that after three-quarters of a cycle, and at each successive half- 
cycle, the isopycnals became horizontal, or nearly so, at least until onset of irregular 
motion. Maximum displacements occurred at times close to each half-cycle of the 
motor drive measured from its start. Visual observations were made of the shape and 
motion of the dye layers. Several experiments were recorded on video. Photographs 

to 8.8 x 
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FIGURE 3. (a) The size of terms of order one to four in the fourth-order expansion for the density 
gradient at the point in a standing wave where the maximum density gradient is reached, as functions 
of the maximum non-dimensional gradient, Q. Here the aspect ratio of the wave mode, k / m ,  is equal 
to 0.01. The values are, however, insensitive to a variation in k/rn to 0.1, and change by less than 5 YO 
at k / m  = 1 .  (b)  The ‘slope’, am, of standing internal waves as a function of the maximum non- 
dimensional density gradient, Q, using the fourth-order expansion for the waves. The ‘slope’ required 
to produce zero gradient in the first-order solution is am = 1. 

were taken at regular, and, when appropriate, at irregular, intervals, viewing the tube 
horizontally and also vertically near the centre and at one end, and using shadowgraphs 
to display the horizontal planform of any disturbances which might evolve. 

Figure 4 shows (a) the initial pattern of dye layers before oscillation, and the wave 
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FIGURE 4. The form of standing internal waves near the centre of a tube (marked at the top by a 
triangle) of height 10 cm with N = 2.37 s-l. The tube is rocked about a horizontal axis 23.5 cm below 
the centre of the tube at a frequency of 7.85 x 10-2s-1. The natural frequency of the first mode is 
8.03 x s-l. Photograph (a)  was taken before the motion was started, the horizontal lines are 
bands of dye marking isopycnals; (b), (c) show the form of waves at maximum displacement when 
the tube is rocked through an angle of 3.73 x rad. 

FIGURE 5. As in figure 4, but showing the development of static instability when the tube amplitude 
is 6.1 x rad. The photographs ( e c )  are about 3 s apart and are taken after 2; tube oscillations. 

form near the centre of the tube at a time close to its maximum amplitude for a forcing 
amplitude of 3.63 x rad and after (b) 4& and (c) 5 cycles of forcing. The tube is 
close to horizontal at this time with the left-hand end rising. No signs of small-scale 
disturbances or of wave breaking are visible. Figure 5 shows the onset of isopycnal 
overturn near the centre of the tube with enhanced forcing, 6.10 x rad. The tube 
is again horizontal with the left-hand end rising. The displacement amplitude of the 
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FIGURE 6. As in figure 4, but showing the development of static instability when the tube amplitude 
is 8.14 x lo-" rad and after 1: tube oscillations. The dye lines and their overturning are best seen by 
viewing the photographs at a low angle from one end. 

isopycnal at the end of the tube is approximately 3.0 cm, giving urn = 0.95 f 0.1. The 
isopycnal surfaces near mid-depth steepen, the dye bands there becoming thicker and 
more diffuse but with no sign of small-scale mixing, and then overturn forming a z-like 
structure similar to those shown in figure 1. Static instability occurs over a vertical scale 
of about 1 cm and individual isopycnals fold over a maximum length of about 19 cm. 
The overturning region extends the full width of the photographs, 75 cm, has a small 
tilt of about 0.018 0.002 (higher to the left) and persists for about 8 s before being 
removed by the reversing periodic flow of the standing wave. The tilt compares with 
the estimates of second-order theory (42.1) of 0.015 k0.002, and has the same sense in 
respect to the wave phase. The overturning structure is seen more clearly in figure 6, 
where the drive amplitude has been increased to 8.14 x lop3 rad. The horizontal scale 
of the z-folds is now some 30 cm and they persist for 16 s, or 6 buoyancy periods. The 
subsequent motion, e,g. as shown in figure 7 one half-cycle after figure 6, becomes very 
irregular, particularly at each half-cycle when the wave steepness is greatest, with 
overturning reoccurring in the centre of the tube. There is evidence of solitary waves 
or wave trains propagating near the upper and lower boundaries (figure 7 b, c), where 
the fluid has become turbulent and mixed, so providing a density structure that can 
support internal surges (Benjamin 1967). 

The horizontal structure of the z-shaped overturning regions was examined by 
propagating a vertical columnated beam of light through the tube to produce 
shadowgraph images on tracing paper on the bottom of the tube. In view of the theory 
developed in Thorpe (1994u), it was expected that some evidence of secondary patterns 
evolving in the region of unstable stratification might be seen. The shadowgraphs 
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(4 
FIGURE 7. The development of irregular motion one half-cycle following figure 6. Photographs are 
about 4 s apart. Solitary waves can be seen propagating along the upper and lower boundaries of the 
tube. 

proved sensitive to small changes in refractive index gradient produced by boundary 
mixing. No evidence of any coherent structure was observed however that could 
unambiguously be associated with the existence of the z-like overturns at times when 
they were visible; indeed no structure was seen that could not be associated either with 
the development of mixing at the sidewalls of the tube or, at a stage when the motion 
became disordered, with instability or waves in the boundary layers adjoining the 
horizontal boundaries. 

rad. Figure 8 shows 
the evolution of the overturning region. In this case the z-pattern, rather than 
remaining distinct, collapsed at a time of about 10 s after the first onset of conditions 
of static instability, leading the changes visible in figure 8(d, e) .  There were, 
significantly, no signs of across-tube transverse eddies, and it is concluded that the 
secondary instability following static instability is not one with constant-phase lines 
parallel to the vorticity of the mean flow as, for example, in Kelvin-Helmholtz 
instability. The resulting mixing resulted in diapycnal diffusion, thickening the dyed 
layer. This is evident in comparing figures 8(a), before instability when the motion is 
steepening the isopycnal surfaces, and 8(g) ,  when the flow field has reversed. 

Forcing was again increased to a drive amplitude of 8.81 x 

2.3. Discussion 
Static instability was observed in a thin linear region, as in figure 2(c), of large 
horizontal extent and of height small in comparison to the tube depth. The observed 
tilt of the region is small and close to that predicted by the second-order theory of $2.1. 
It should be noted that, in order to avoid the effects of parametric instability (McEwan 
& Robinson 1975; see also Thorpe 1994b), the forcing was increased to such an extent 
that the standing waves overturned at a short time, only one and a half to three cycles 
after the onset of the tube motion (see figure captions) and that it is possible that the 
waves are not, at this time, independent of the initial conditions. 

The statically unstable structures seen in the experiments are very similar to those 
already found elsewhere (e.g. in figure l), and appear to be characteristic of progressive 
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FIGURE 8. The development of static instability and mixing. Here N = 2.57 s-' and the tube rocking 
frequency is 8.57 x s-l. The frequency of the first mode is 8.71 x lo-* s-l. Only five dye layers are 
present, of which that a t  mid-depth is most obvious in the photographs taken from a video and 
showing the tube 1; cycles after the start of oscillation. Photographs are shown at  times after (a) 0, 
(b) 4 s, (c) 8 s, (d)  10 s, (e)  12 s, ( , f )  14 s, (g) 18 s. The arrows in (a)  mark the levels of the top and 
bottom boundaries of the 10 cm deep Perspex tube. The central dye line and its mixing are best seen 
by viewing the photographs at  a low angle from one end. 

waves in shear flows where static instability precedes K-H instability, as well as of 
standing waves. 

3. Discussion; the growth of disturbances in standing waves 
A stability analysis of a fluid with density profile given by (12) which locally 

describes the density in the overturning waves in the experiments, is given by Thorpe 
(1994~). This predicts growth rates of disturbances which can be applied to the 
laboratory experiments. Growth rates depend on the Rayleigh, Prandtl, and Reynolds 
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FIGURE 9. Definition sketch showing overturning isopycnal surfaces and corresponding scales 
referred to in the text: (a) isopycnals; (b) density profile. 

numbers which characterize the flow and density fields, as well as on a parameter, r ,  
equal to N 2 / g K A ,  which describes the shape of the density profile (12). The Rayleigh 
number is given by Ra = gB, d4/v9, where po B, is the density gradient at the centre 
of the statically unstable layer, d is the vertical scale of the overturning region as shown 
in figure 9,  and v and 9 are the kinematic viscosity and density molecular diffusivity, 
respectively. (Ra is equal to Ra, in Thorpe 1994~).  Pr is equal to v / 9 ,  about 700 for 
the salt-stratified laboratory fluid, and Re = U'd2/v,  where U' is the vertical shear. 
Growth rates are estimated for fluids in which the shear in the region of density 
overturn is uniform as, to a first approximation, is the shear expected in the 
experiments (32.1). 

To use the predictions to obtain estimates of the laboratory growth rates, we must 
first estimate the Rayleigh number in the z-shaped isopycnal regions. The height, h,, 
(figure 9 )  characterizes the vertical scale of the z-structure, and this may be equated to 
2d from consideration of the vertical density profile at section BB. The height of the 
region of positive (statically unstable) density, EF, is approximately ;hl, so that the 
maximum density gradient is 2Ap/h,, where po and po + Ap are the densities of the two 
isopycnals chosen so that their folded regions just reach section AA. The density 
difference, Ap,  of the isopycnal surfaces may be calculated from the difference in 
density of dyed isopycnals in the experiment, Apl, and their observed horizontal 
separation, L,; A p  = ZApl/Ll, where 1 is the isopycnal folding length. A p  is found from 
the initial vertical separation of the dyed isopycnals, h ;  Apl = hp,  N 2 / g .  We may 
therefore estimate the Rayleigh number of the fluid in the z-shaped structure in terms 
of measurable quantities: Ra = Zhh; N2/ (8Ll  v9). 

The appropriate value of r may be estimated from d and the tube height, H = 10 cm. 
For example, in the experiment shown in figure 6, h, (= 2d) = 0.8 cm, so that 
2d/H = 0.08 and we find r = 0.98. We have I = 30 cm and L, = 60 cm, h = 0.8cm 
and N = 2.57 s-l, so that, with v = 0.01 cm s-l and 9 = 1.4 x cm2 s-l, we find 
Ra = 1.51 x lo6, with an estimated error of k0.4 x lo6. This considerably exceeds the 
critical Rayleigh number, 88.0, and the fluid should therefore be unstable. 

The corresponding maximum growth rate of the disturbance with wavenumber 
transverse to the flow is obtained from figure 5(b) of Thorpe (1994a) and converts into 
a dimensional value of 0.228 s-l. The non-dimensional wavenumber of the instability 



348 S .  A .  Thorpe 

is /3 = 3.26, corresponding to a wavelength 2nd//3 of 0.77 cm, a scale sufficiently large 
to be detected in the shadowgraphs. If we take half the maximum growth rate as a best 
present estimate of the actual growth rate of a disturbance over the period, 16 s, for 
which the z-structure persists, then an infinitesimal disturbance would be amplified by 
a factor exp(l6 x 0.1 14) = 6.2. This is not very large, and perhaps explains why no 
resulting disturbance is detectable. Caution is necessary for several reasons. For 
example, the timescale of growth of the disturbance is not much less than the evolution 
timescale of the density field, so that the assumption of a steady state is violated. The 
Reynolds number of the laboratory flow is 75 & 15, obtained using an estimate of shear 
derived from the horizontal scale of the z-structure, 30 cm, produced in 8 s with a 
vertical scale d = 0.4 cm. The growth rate at these values of Ra and Re derived from 
a numerically derived equation (Thorpe 1994a, ( 3 2 ) ,  $ 3 . 5 )  for the growth rates, but 
with considerable interpolation, is negative. This supports a hypothesis that the mode 
with transverse wavenumber, with positive growth rates as found above, will dominate. 

For comparison, the experiment shown in figure 8 and in which mixing was 
observed, has Ra = (6.94 f 1 .S) x lo7 and r = 0.87, corresponding to a dimensional 
growth rate of 0.42 s-l and a disturbance amplification factor of 66.7 at the time 
instability was first seen. The absence of transverse structure in the transition from 
static instability is consistent with an instability having constant-phase lines parallel to 
the flow. 

These conclusions are conditional on assumptions made in deriving the estimates of 
growth rates, of which that most likely to fail is that a linear description remains 
accurate at Rayleigh numbers that are far greater than the critical. The inverse growth 
rate in the final experiment described (figure 8) are much less than the wave periods 
and, more significantly, are much smaller than the times for which wave overturn 
persists, indicating that the steady-state assumptions are likely to be valid. 

4. Conclusions 
In the experiments on standing waves and in earlier experiments referred to in 3 1. I ,  

thin elongated statically unstable layers are observed. The layers may persist for several 
times the overall buoyancy period. When instability is observed (figure 8), it does not 
have a transverse structure. 

Comparison of the growth rates at similar Rayleigh numbers and scale of overturn 
(parameterized by r)  using the theory developed by Thorpe (1994a), shows that the 
extensive horizontal regions of statically unstable fluid found in the experiments 
(figures 5 and 6 )  at Pr = 700 would be less likely to persist without the evolution of 
large secondary instabilities in thermally stratified ocean waters (Pr = 7) or in the 
atmosphere (Pr = 0.7), since the growth rates would be greater at comparable Rayleigh 
numbers. The development of turbulence in breaking internal waves may therefore 
depend on the Prandtl number of the fluid. The effects of shear on the stability of fluid 
that is unstably stratified will depend on the detailed flow structure (see again Thorpe 
1994a), which may vary from one kind of breaking internal wave to another (5 1.1). It 
appears unlikely that, without a careful analysis of the time development of the flow 
field and the variation of parameters (the Reynolds and Rayleigh numbers in 
particular) in the period following wave ' overturn' and during which disturbances are 
growing to measureable amplitude, the form of the dominant instability can be 
accurately predicted. The evolution, and hence the form of internal wave breaking, 
may differ in different circumstances, thus leading to a yet unclassified hierarchy of 
types of breaking waves, akin to the spilling and plunging classes of surface gravity 
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waves. It is possible that several modes may grow simultaneously at similar rates. 
Taylor’s (1992) experiments on internal standing waves were in a range of slopes 
0.89 < am < 1.2 (private communication) in which isopycnal overturning appears 
likely, and the interleaving of density surfaces and the ‘traumata’ reported by McEwan 
(1 973) may have been caused, in part, by the development of z-structures found here, 
whilst the variety of structures observed by Taylor supports the conjecture that several 
modes of instability may grow simultaneously. The contribution of parametric 
instability is, however, a further important contributing factor in these experiments 
(McEwan & Robinson 1975), and to some other types of breaking waves (Thorpe 
1994b). In the natural environment, the generally larger scales of waves, motion and 
density structure may contribute to larger Rayleigh and Reynolds numbers than found 
in the laboratory, whilst enhanced levels of ‘background’ disturbance will contribute 
larger ‘initial’ disturbances, each increasing the likelihood that secondary instabilities 
will lead to turbulence and mixing. 

It is important to note that the generation of the z-shaped regions of static instability 
in standing or progressive internal waves has not been explained. There are, moreover, 
no solutions available to describe the large-amplitude standing waves in a rectangular 
container ($2). 

The experiments described above were made at the Centre for Water Research at the 
University of Western Australia during a period of study leave in 1992. I am grateful 
to Mr John Devil1 and Mr Bill Deugh for their expert construction of apparatus, to Mr 
Seng Giap Teoh, Mrs Silvia Bruno and to my wife, Daph, for their help in recording 
the experiments, and to the CWR and the Royal Society for financial support which 
made the very pleasant visit possible. 
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